plastic
Introduction
Sections in this article:
Development of Plastics
The first important plastic, celluloid, was discovered (c.1869) by the American inventor John W. Hyatt and manufactured by him in 1872; it is a mixture of cellulose nitrate, camphor, and alcohol and is thermoplastic. However, plastics did not come into modern industrial use until after the production (1909) of Bakelite by the American chemist L. H. Baekeland. Bakelite, made by the polymerization of phenol and formaldehyde, is thermosetting. New uses for plastics are continually being discovered. Following World War II optical lenses, artificial eyes, and dentures of acrylic plastics, splints that X rays may pierce, nylon fibers, machine gears, fabric coatings, wall surfacing, and plastic lamination were developed. More recently a hydrophilic, or water-attracting, plastic suitable for use in non-irritating contact lenses has been developed. Among the trade names by which many plastic products are widely known are Plexiglas, Lucite, Polaroid, Cellophane, Vinylite, and Koroseal. Plastics reinforced with fiberglass are used for boats, automobile bodies, furniture, and building panels.
Environmental Considerations
Plastics are so durable that they will not rot or decay as do natural products such as those made of wood. As a result great amounts of discarded plastic products accumulate in the environment as waste. It has been suggested that plastics could be made to decompose slowly when exposed to sunlight by adding certain chemicals to them. Plastics present the additional problem of being difficult to burn. When placed in an incinerator, they tend to melt quickly and flow downward, clogging the incinerator's grate. They also emit harmful fumes; e.g., burning polyvinyl chloride gives off hydrogen chloride gas.
Molding of Plastic
Plastics are available in the form of bars, tubes, sheets, coils, and blocks, and these can be fabricated to specification. However, plastic articles are commonly manufactured from plastic powders in which desired shapes are fashioned by compression, transfer, injection, or extrusion molding. In compression molding, materials are generally placed immediately in mold cavities, where the application of heat and pressure makes them first plastic, then hard. The transfer method, in which the compound is plasticized by outside heating and then poured into a mold to harden, is used for designs with intricate shapes and great variations in wall thickness. Injection-molding machinery dissolves the plastic powder in a heating chamber and by plunger action forces it into cold molds, where the product sets. The operations take place at rigidly controlled temperatures and intervals. Extrusion molding employs a heating cylinder, pressure, and an extrusion die through which the molten plastic is sent and from which it exits in continuous form to be cut in lengths or coiled.
Composition and Types of Plastic
A plastic is made up principally of a binder together with plasticizers, fillers, pigments, and other additives. The binder gives a plastic its main characteristics and usually its name. Thus,
There are two basic types of plastic: thermosetting, which cannot be resoftened after being subjected to heat and pressure; and thermoplastic, which can be repeatedly softened and remolded by heat and pressure. When heat and pressure are applied to a thermoplastic binder, the chainlike polymers slide past each other, giving the material “plasticity.” However, when heat and pressure are initially applied to a thermosetting binder, the molecular chains become cross-linked, thus preventing any slippage if heat and pressure are reapplied.
See epoxy resins; polyacrylics; polycarbonates; polyethylene; polyolefins; polypropylene; polystyrene; polyurethanes; polyvinyl chloride; vinyl plastics.
Bibliography
See L. K. Arnold,
The Columbia Electronic Encyclopedia, 6th ed. Copyright © 2025, Columbia University Press. All rights reserved.
See more Encyclopedia articles on: Organic Chemistry
